Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance

نویسندگان

  • Qing-qing Yang
  • Chang-quan Zhang
  • Man-ling Chan
  • Dong-sheng Zhao
  • Jin-zhu Chen
  • Qing Wang
  • Qian-feng Li
  • Heng-xiu Yu
  • Ming-hong Gu
  • Samuel Sai-ming Sun
  • Qiao-quan Liu
چکیده

Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Production of Marker-free Transgenic Rice (Oryza sativa L.) with Improved Nutritive Quality Expressing AmA1

Background: Rice seed proteins are lacking essential amino acids (EAAs). Genetic engineering off ers a fast and sustainable method to solve this problem as it allows the specifi c expression of heterologous EAA-rich proteins. The use of selectable marker gene is essential for generation of transgenic crops, but might also lead to potential environmental and food safety problems...

متن کامل

Biofortification of essential nutritional compounds and trace elements in rice and cassava.

Plant biotechnology can make important contributions to food security and nutritional improvement. For example, the development of 'Golden Rice' by Professor Ingo Potrykus was a milestone in the application of gene technology to deliver both increased nutritional qualities and health improvement to wide sections of the human population. Mineral nutrient and protein deficiency as well as food se...

متن کامل

Identification of the First Limiting Amino Acid in Cooked

Forty-eight male weanling rats (91 g) were utilized to study the nutritional adequacy of cooked polished white rice. Rats were individually housed, and allowed ad libitum access to one of six treatment diets. Treatment diets were 1) polished white rice plus 10% casein and 0.18% methionine, CAS, 2) polished white rice, WHR, 3) polished white rice plus 0.45% lysine, LYS, 4) polished white rice pl...

متن کامل

Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization

BACKGROUND Zinc (Zn) biofortification through foliar Zn application is an attractive strategy to reduce human Zn deficiency. However, little is known about the biofortification efficiency and bioavailability of rice grain from different forms of foliar Zn fertilizers. METHODOLOGY/PRINCIPAL FINDINGS Four different Zn forms were applied as a foliar treatment among three rice cultivars under fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016